Identification of ARARX models in presence of additive noise
نویسندگان
چکیده
The identification of dynamic processes can be performed by means of different classes of models relying on different stochastic environments to describe the misfit between the model and process observations. This paper introduces a new class of models by considering additive error terms on the observations of the input and output of ARARX models and proposes a three–step identification procedure for their identification. ARARX + noise models extend the traditional ARARX or ARMAX ones and can be seen as errors–in–variables models where both measurement errors and process disturbances are taken into account. The results of Monte Carlo simulations show the good performance of the proposed identification procedure.
منابع مشابه
Capacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملFrequency domain identification of autoregressive models in the presence of additive noise
This paper describes a new approach for identifying autoregressive models from a finite number of measurements, in presence of additive and uncorrelated white noise. As a major novelty, the proposed approach deals with frequency domain data. In particular, two different frequency domain algorithms are proposed. The first algorithm is based on some theoretical results concerning the so–called dy...
متن کاملDesign of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems
In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...
متن کاملA New Estimation Approach for Ar Models in Presence of Noise
This paper considers the problem of estimating the parameters of an autoregressive (AR) process in presence of additive white noise and proposes a new identification method, based on theoretical results originally developed in errors–in–variables contexts. This approach allows to estimate the AR parameters, the driving noise variance and the variance of the additive noise in a congruent way in ...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کامل